Genetic changes associated with native plant propagation: case study in *Castilleja levisecta*

Adrienne Basey
Northwestern University
Chicago Botanic Garden
Study species

Castilleja levisecta

golden paintbrush

- short-lived perennial
- Orobanchaceae
- hemiparasitic
- **effectively self-incompatible**
- pollinated by *Bombus*
- federally threatened

Photo: Tom Kaye
Historic range

Pacific Northwest

• British Columbia
• Washington
• Oregon

Threatened due to habitat loss:
• urbanization
• non-native species
• forest encroachment
Current range

- 11 extant populations
- most occur in islands of the Puget Sound
Reintroduction

- began in 2005
- all in this study occurred in 2010-2011
- Two planting techniques
 - seed
 - plug
Reintroduction

Wild seed collected

Grown in seed-increase beds

Outplanted in reintroduction sites

Genetic Change?
Genetic diversity…

Why is it important?

Restorations using plants with higher genetic diversity have:

✓ faster recovery after climactic extremes
 (Hughes and Stachowicz 2004)

✓ increased resistance to pests and pathogens
 (Tooker and Frank 2012)

✓ improved establishment success
 (Crawford and Whitney 2011)

✓ more potential to respond to a changing climate
 (Jump et al. 2009)
Genetic diversity…

What is it?

“The extent of genetic variation in a population or species” (Frankham 2013)

- variants and proportion of genes
 (number of alleles, Na; number of effective alleles, Ne)
- pairing of alleles within an individual
 (observed heterozygosity, Ho; expected heterozygosity, He)
- differences between individuals (inbreeding, F)
- differences between populations (structure, Fst)
Genetic diversity...

What is it... for this study?

- inbreeding depression
- "local" adaptation
- seed transfer zones

✔ microsatellites: non-adaptive (neutral)
Potential means of genetic change through propagation

Potential means of genetic change through propagation

- Each grey box represents an action
- Each action has inherent potential to change genetic diversity
- As plants are held in production longer, there is greater risk of genetic change

Nursery design

Wild:
- Naas (N)
- Rocky Prairie (R)
-Ebey’s Landing (E)
-Fort Casey (C)

Corvallis Plant Materials Center (ORPMC)

Webster Nursery
Nursery design

Wild:
- Naas (N)
- Rocky Prairie (R)
- Ebey’s Landing (E)
- Fort Casey (C)

Corvallis Plant Materials Center (ORPMC)

Webster Nursery
Study populations

- **Wild**
 - N
 - R
 - E
 - C

- **Nursery**
 - ORPMC
 - NS
 - RS
 - ES
 - CS
 - Web

- **Reintroduction**
 - Plug from ORPMC

- **Seed from ORPMC**
- **Seed from Webster**
- **Smith Prairie**

- **pop n = 21**
- **sample n = 617**
- nursery material = 1st generation
- reintroduction = 2nd generation
Study question

- Does propagation in the nursery change genetic diversity?

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Bottleneck</th>
<th>Outbreeding</th>
<th>Status quo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of alleles</td>
<td>↓</td>
<td>↑</td>
<td>no change</td>
</tr>
<tr>
<td>Inbreeding value</td>
<td>no change</td>
<td>↓</td>
<td>no change</td>
</tr>
<tr>
<td>Genetic structure (Fst)</td>
<td>high structure, genetically similar to one source</td>
<td>low structure, genetically variable</td>
<td>structure will mirror wild populations</td>
</tr>
</tbody>
</table>
Methods: data collection

DNA extraction

DNA amplification

leaf collection

genetic analysis

UFP28	14	101	101	182	182	225	225	241	241	210	210	165	165	241	247	202	241									
UFP30	14	101	101	182	191	225	227	247	253	210	216	174	174	241	244	202	202									
UFP32	14	101	110	182	200	225	227	247	253	210	216	171	174	244	247	217	235									
UFP34	14	101	101	191	191	227	242	247	247	210	210	165	174	244	247	205	220									
UFP36	14	107	107	191	191	227	227	247	247	210	210	174	174	247	247	238	244									
UFP37	14	101	101	182	182	219	225	250	253	210	210	165	165	247	247	202	205									
UFP38	14	104	107	182	191	221	242	247	253	213	216	168	174	244	247	211	220									
UFP39	14	101	107	182	191	219	227	247	250	210	213	174	180	244	247	214	235									
Methods: data analysis

- **GenAlEx**
 - number of alleles (Na)
 - number of effective alleles (Ne)
 - observed heterozygosity (Ho)
 - expected heterozygosity (He)
 - inbreeding coefficient (F)
 - population differentiation (Fst)

- **R statistical software**
 - analyses of variance (ANOVA)
 - Tukey HSD

- **Structure**
 - visualize genetic similarity
Results: diversity

<table>
<thead>
<tr>
<th>Analysis of Variance (ANOVA) results</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversity Index</td>
<td>p value</td>
</tr>
<tr>
<td>Number of alleles (Na)</td>
<td><0.001</td>
</tr>
<tr>
<td>Number of effective alleles (Ne)</td>
<td>0.02</td>
</tr>
<tr>
<td>Observed heterozygosity (Ho)</td>
<td>0.006</td>
</tr>
<tr>
<td>Effective heterozygosity (He)</td>
<td>0.01</td>
</tr>
<tr>
<td>Inbreeding (F)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Yes, the groups differ!
Results: diversity

Wild:
- vary considerably

Nursery:
- looks similar to wild populations… BUT!
- Higher inbreeding

Reintroductions:
- all were higher in number of alleles
- differ from nursery inbreeding
- seed and plug techniques do not differ

<table>
<thead>
<tr>
<th>Location</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naas Seed Bed</td>
<td>NS</td>
</tr>
<tr>
<td>Rocky Prairie Seed Bed</td>
<td>RS</td>
</tr>
<tr>
<td>Ebey’s Landing Seed Bed</td>
<td>ES</td>
</tr>
<tr>
<td>Fort Casey Seed Bed</td>
<td>CS</td>
</tr>
<tr>
<td>Webster Nursery</td>
<td>Web</td>
</tr>
</tbody>
</table>

Number of alleles

Inbreeding coefficient
Results: diversity

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Bottleneck</th>
<th>Outbreeding</th>
<th>Status quo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of alleles</td>
<td>↓</td>
<td>↑↑</td>
<td>no change</td>
</tr>
<tr>
<td>(Na,Ne)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inbreeding</td>
<td>no change</td>
<td>↓↓</td>
<td>no change</td>
</tr>
<tr>
<td>(Ho,He,F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixation index</td>
<td>high structure, genetically similar to one source</td>
<td>low structure, genetically variable</td>
<td>structure will mirror wild populations</td>
</tr>
<tr>
<td>(Fst)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: structure

High gene flow – low structure

Low gene flow – high structure
Results: structure

Rocky Prairie differs from the rest

Naas and Fort Casey more similar than Ebey’s Landing are to either

Each cluster well represents a population
Results: structure

- nursery populations mirror wild sources
- reintroductions from ORPMC display admixture of wild sources
- reintroductions from Webster show less consistency
Smith Prairie

- The only population that was not allowed to cross-pollinate within the nursery design
And...

- The only population where the reintroduction site showed a decrease in the number of alleles from the wild source population
Steps in nursery propagation within study

- Smith Prairie results highlight the influence of cross-pollination in this study.
- Other studies looking at nursery propagation without this step may have very different results.
Results

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Bottleneck</th>
<th>Outbreeding</th>
<th>Status quo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of alleles (Na,Ne)</td>
<td>↓</td>
<td>↑</td>
<td>no change</td>
</tr>
<tr>
<td>Inbreeding (Ho,He,F)</td>
<td>no change</td>
<td>↓</td>
<td>no change</td>
</tr>
<tr>
<td>Fixation index (Fst)</td>
<td>high structure, genetically similar to one source</td>
<td>low structure, genetically variable</td>
<td>structure will mirror wild populations</td>
</tr>
</tbody>
</table>
Conclusions

- Nursery production successfully increased genetic diversity
 - reintroduction sites show higher number of alleles and lower inbreeding
 - nursery production provides a more relaxed selection than in the wild

- Wild communities show unique genetic signatures

- Nursery populations tended to have higher inbreeding
 - could impact reintroduction sites if:
 - inbred plants survive through outplanting
 - inbred plants are held through multiple generations in the nursery, compounding the effects

- Source-identified nursery rows benefit production results
Success! How was this accomplished?

- careful site selection
- defined seed-collection protocol

- beneficial germination conditions
- source-identified rows allows control over seed mix
- plants grown in seed increase beds for sing
Acknowledgments

- Andrea Kramer and Jeremie Fant
- Nyree Zerega
- Tom Kaye
- Peter Dunwiddie

- Havens/Kramer Lab

- Deisi Williamson
- Jeremy Sutherland

Funding:
- Northwestern Plant Biology and Conservation
- Washington Native Plant Society
- Research Experience for Undergraduates
- Shaw Family
- Robert D. Hevey and Constance M. Filling
- Harris Foundation
Questions?

Photo: Dave Skaar
References

Frankham, R. et al. Predicting the probability of outbreeding depression. Conservation Biology. 25(3) 465-475